Filomat 29:6 (2015), 1209–1216 DOI 10.2298/FIL1506209A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some New Fixed Point Results via the Concept of Measure of Noncompactness

Asadollah Aghajani^a, Alireza Mosleh Tehrani^a, Donald O'Regan^b

^a School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844-13114, Iran. ^b School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway, University Road, Galway, Ireland.

Abstract. In this paper we present a generalization of Darbo's fixed point theorem and using this generalization we prove an *e*-fixed point result in Banach spaces. Also, we present a generalization of Darbo and Sadovskiĭ fixed point theorem in uniformly convex Banach spaces.

1. Introduction and Preliminaries

The concept of a measure of noncompactness (MNC) was initiated by Kuratowski [21]. If *A* is a bounded set of a metric space, the Kuratowski MNC of *A* is defined as

 $\alpha(A) = \inf\{\epsilon > 0 : A \text{ can be covered with a finite number of sets of diameter smaller than } \epsilon\}.$

In 1957, Goldenštein, Gohberg and Markus [18] introduced another MNC called the Hausdorff MNC and is defined as

 $\chi(A) = \inf \{ \epsilon > 0 : A \text{ has a finite } \epsilon - \text{net in } E \}.$

We refer the reader to Sadovskiĭ [24] who introduced a general concept of MNC (see also [7], [10], [11]).

In 1955, G. Darbo proved a fixed point theorem via the concept of Kuratowski MNC [15] which generalizes the classical Schauder fixed point theorem. In 1980, Banaś proved a fixed point theorem of Darbo type (see Theorem 1.5) using the axiomatic definition of MNC [11].

For applications to differential and integral equations we refer the reader to [3, 5, 6, 9, 10, 12–14, 16, 17, 19, 20, 22, 23, 25, 26].

For the rest of this section, we provide some notations, definitions and fundamental theorems which will be needed. Let *E* be a given Banach space with the norm $\|.\|$ and zero element θ . Denote by \overline{X} and Conv*X* the closure and closed convex hull of *X*, respectively, where *X* is a nonempty, bounded subset of *E*. We denote by \mathfrak{M}_E the family of all nonempty, bounded subsets of *E* and by \mathfrak{N}_E its subfamily consisting of all relatively compact sets.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H08; Secondary 47H09, 47H10

Keywords. measure of noncompactness, Darbo fixed point theorem, ϵ -fixed point, nonexpansive mapping, uniformly convex space.

Received: 25 November 2013; Accepted: 08 January 2014

Communicated by Ljubomir Ćirić

Email addresses: aghajani@iust.ac.ir (Asadollah Aghajani), amtehrani@iust.ac.ir (Alireza Mosleh Tehrani),

 $[\]tt donal.oregan@nuigalway.ie~(Donald~O'Regan)$

Definition 1.1 ([1]). Let X and Y be normed linear spaces. A map $T : X \to Y$ is called compact if TX is contained in a compact subset of Y.

Definition 1.2 ([1]). Let X be a subset of a Banach space E and F : $X \to X$ a map. Given $\epsilon > 0$, a point $x \in X$ with $||x - F(x)|| < \epsilon$ is called an ϵ -fixed point for F. We say that F has the ϵ -fixed point property if for any $\epsilon > 0$, F has a ϵ -fixed point.

Definition 1.3. A mapping $\mu : \mathfrak{M}_E \to \mathbb{R}_+ = [0, +\infty)$ is said to be an MNC in *E* if it satisfies the following conditions for all $X, Y \in \mathfrak{M}_E$:

- 1° ker $\mu = \{X \in \mathfrak{M}_E : \mu(X) = 0\} \neq \emptyset$ and ker $\mu \subseteq \mathfrak{N}_E$.
- $2^{\circ} X \subseteq Y \Rightarrow \mu(X) \leq \mu(Y).$
- $3^{\circ} \mu(\overline{X}) = \mu(ConvX) = \mu(X).$
- 4° $\mu(\lambda X + (1 \lambda)Y) \leq \lambda \mu(X) + (1 \lambda)\mu(Y)$ for every $\lambda \in [0, 1]$.
- 5° If $X_n \in \mathfrak{M}_E$, $X_{n+1} \subseteq X_n$, $X_n = \overline{X}_n$ for n=1, 2, 3, ... and $\lim_{n \to \infty} \mu(X_n) = 0$, then $X_{\infty} = \bigcap_{n=1}^{\infty} X_n \neq \emptyset$.

In addition, if μ satisfies

$$6^{\circ} \ \mu(X+Y) \leq \mu(X) + \mu(Y)$$

then it is said to be subadditive.

The family ker μ mentioned in 1° is called the kernel of the MNC μ . Also, notice that the intersection set X_{∞} from axiom 5° is a member of ker μ .

An elementary example of an MNC on a Banach space *E* is defined as follows

$$\mu(A) = \delta(A)$$
 for all $A \in \mathfrak{M}_E$;

here $\delta(A) = \sup \{ ||x - y|| : x, y \in A \}.$

Theorem 1.4 ([1]). Let C be a nonempty, bounded, closed and convex subset of a Banach space E. Then every compact, continuous map $F : C \to C$ has at least one fixed point.

The above fixed point theorem is known as Schauder's fixed point principle and its generalization, called the Darbo fixed point theorem, is stated next.

Theorem 1.5 ([10]). *Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let* $T : C \to C$ *be a continuous mapping. Assume that there exists a constant* $k \in [0, 1)$ *such that*

$$\mu(TA) \leq k\mu(A)$$

for any nonempty subset A of C, where μ is an MNC defined in E. Then T has at least a fixed point in the set C.

A celebrated generalization of Darbo's fixed point theorem is the following result, usually called the theorem of Darbo and Sadovskiĭ.

Theorem 1.6 ([8]). Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let $T : C \to C$ be a continuous mapping. Assume that μ is an MNC defined on \mathfrak{M}_E with the following additional condition

 $\mu(A \cup B) = \max \{ \mu(A), \mu(B) \} \text{ for all } A, B \in \mathfrak{M}_E.$

If for any nonempty subset A of C we have

$$\mu(TA) < \mu(A),$$

then T has a fixed point in C.

In this paper, we obtain a generalization of the Darbo fixed point theorem under weaker conditions than [4] and using this generalization we prove an ϵ -fixed point result in Banach spaces. Under a certain condition, we give some fixed point results for mappings that have the ϵ -fixed point property. The last section of this paper is devoted to generalizing Theorem 1.6 in uniformly convex Banach spaces.

(1)

(2)

2. *c*-fixed Point Result

Let *E* be a Banach space and μ be an MNC on \mathfrak{M}_E such that $\{\theta\} \in \ker \mu$. Let *C* be a nonempty subset of *E* and *T* : *C* \rightarrow *C* be a map. For any nonempty subset *A* of *C* we define, and fix hereafter, the iterative sequence $\{A_n(T)\}$, dependent on the set *A* and the map *T*, as follows

$$A_0 = A \text{ and } A_n = \operatorname{Conv} TA_{n-1} \text{ for all } n \in \mathbb{N}.$$
(3)

Now, we present a simple generalization of the Darbo fixed point theorem.

Theorem 2.1. Let *C* be a nonempty, bounded, closed and convex subset of *E* and $T : C \to C$ be a continuous mapping. Assume that there exists a nondecreasing function $\psi : [0, +\infty) \to [0, +\infty)$ such that $\psi^n(t) \to 0$ as $n \to \infty$ for each $t \ge 0$. If for all nonempty, closed and convex subsets *A* of *C* with $TA \subseteq A$ there exists a constant $m = m(A) \in \mathbb{N}$ such that

$$\mu(A_m(T)) \leqslant \psi(\mu(A)). \tag{4}$$

Then, T has at least a fixed point in C.

Proof. Let

 $\mathfrak{B} = \{B \subseteq C : B \text{ is nonempty, bounded, closed and convex with } TB \subseteq B\}.$

Notice that $C_n(T) \in \mathfrak{B}$ for all $n \in \mathbb{N}$ where C_n is defined as in (3) with $C_0 = C$. Since the sequence $\{\mu(C_n(T))\}$ is decreasing and nonnegative, therefore $\mu(C_n(T)) \to r$ when $n \to \infty$, where r is a nonnegative real number. Now taking into account (4), we see there exists $k_1 \in \mathbb{N}$ such that

$$\mu(C_{k_1}(T)) \leq \psi(\mu(C))$$

Having chosen $k_2, k_3, ..., k_{i-1}$, we see from our assumption that there exists $k_i \in \mathbb{N}$ such that

$$\mu\left(\left(C_{k_1+k_2+\ldots+k_{i-1}}(T)\right)_{k_i}(T)\right) = \mu\left(C_{k_1+k_2+\ldots+k_i}(T)\right) \le \psi^i\left(\mu(C)\right).$$
If we put $n_i = \sum_{n=1}^i k_n$, then (5) can be rewritten as
$$(5)$$

$$\mu(C_{n_i}(T)) \leq \psi^i(\mu(C)).$$
(6)

Since $\psi^i(\mu(C)) \to 0$ as $i \to \infty$, (6) implies that r = 0 so the set $C_{\infty} = \bigcap_{n=1}^{\infty} C_n(T)$ is nonempty and compact. Since the set C_{∞} is also convex and invariant under *T*, the classical Schauder fixed point theorem (Theorem 1.4) completes the proof. \Box

Now, suppose that *C* is a nonempty, bounded, closed and convex subset of *E* and *T* : *C* \rightarrow *C* is a map. Assume that $\lambda \in [0, 1]$. Define, and fix hereafter, the family $\mathcal{A}_{T,\lambda}$ as follows

$$\mathcal{A}_{T,\lambda} := \Big\{ A \subseteq C : A \neq \emptyset, \ A = \text{Conv}A, \ \lambda(TA) \subseteq A \text{ and } \frac{1}{\lambda}A \subseteq C \Big\}.$$

Notice that $C \in \mathcal{A}_{T,1}$ and if $\theta \in C$, then by the convexity of C we have $C \in \mathcal{A}_{T,\lambda}$ for any $\lambda \in [0, 1)$.

The following result gives us a sufficient condition so that a self map *T* has the ϵ -fixed point property.

Theorem 2.2. Let C be a nonempty, bounded, closed and convex subset of E with $\theta \in C$ and $T : C \to C$ be a continuous mapping. If there exist $\lambda_0 \in [0, 1)$ with the property that: for all $A \in \mathcal{A}_{T,\lambda}$ with $\lambda \in (\lambda_0, 1)$ there exists a nonnegative integer m such that

$$\mu(TA_m(\lambda T)) \leqslant \mu(A). \tag{7}$$

Then T has the ϵ *-fixed point property.*

,

Proof. Choose $\lambda_0 < \lambda < 1$ and define $G_{\lambda} : C \to C$ with $G_{\lambda}x = \lambda Tx$. If $A \in \mathcal{A}_{T,\lambda}$, then, by axiom 4° and (7), we have

$$\mu(A_{m+1}(G_{\lambda})) = \mu(\operatorname{Conv}\lambda T(A_m(G_{\lambda}))) \leq \lambda \mu(TA_m(\lambda T)) \leq \lambda \mu(A).$$

Now, Theorem 2.1 (define $\psi(x) = \lambda x$ for all $x \ge 0$) guarantees that there exists $x_{\lambda} \in C$ with

$$x_{\lambda} = G_{\lambda} x_{\lambda} = \lambda T x_{\lambda}.$$

Thus

 $||x_{\lambda} - Tx_{\lambda}|| = (1 - \lambda)||Tx_{\lambda}|| \leq (1 - \lambda)\delta(C) \to 0 \text{ as } \lambda \to 1.$

This completes the proof. \Box

Now, we mention two corollaries of Theorem 2.2.

Corollary 2.3. Let C be a nonempty, bounded, closed and convex subset of E and $T : C \to C$ be a continuous mapping and $\theta \in C$. Assume that there exists $\lambda_0 \in [0, 1)$ such that for any $A \in \mathcal{A}_{T,\lambda}$ with $\lambda \in (\lambda_0, 1)$ we have

 $\mu(TA) \leq \mu(A).$

Then T has the ϵ *-fixed point property.*

Proof. It is just sufficient to consider m = 0 for all $A \in \mathcal{A}_{T,\lambda}$ with $\lambda \in (\lambda_0, 1)$ in Theorem 2.2.

Notice that the following well-known result is a special case of Corollary 2.3.

Corollary 2.4. Let C be a nonempty, bounded, closed and convex subset of E and T : C \rightarrow C be a nonexpansive mapping and $\theta \in C$. Then T has the ϵ -fixed point property.

Proof. Consider the function δ given in (1) as an MNC on \mathfrak{M}_E . By the nonexpansivity of *T*, for all nonempty subset *A* of *C* we have

$$||Tx - Ty|| \le ||x - y|| \le \delta(A) \text{ for all } x, y \in A.$$
(8)

Now, (8) implies that

 $\delta(TA) \leq \delta(A).$

Then, by Corollary 2.3, *T* has the ϵ -fixed point property.

In the following examples, we apply the above results to an old and well-known example in Hilbert space l^2 (see [8]) and the Fredholm operator.

Example 2.5. Let U_2 be the closed unit ball in l^2 . Define the operator $T: U_2 \to U_2$ by

$$T(x) = T(x^1, x^2, x^3, ...) = (\sqrt{1 - ||x||^2}, x^1, x^2, x^3, ...)$$
 for all $x \in U_2$.

Then we can write T = D + S where D is the one dimensional mapping

 $D(x) = D(x^1, x^2, x^3, ...) = (\sqrt{1 - ||x||^2}, 0, 0, 0, ...)$ for all $x \in U_2$,

and S is an isometry. Hence, T is continuous and for every bounded subset B of U_2 we have $\mu(T(B)) \leq \mu(D(B)+S(B)) \leq \mu(D(B)) + \mu(S(B)) \leq 0 + \mu(B)$, where μ is a subadditive MNC on \mathfrak{M}_{l^2} . So, by Theorem 2.2, T has ϵ -fixed point property. However, it is easy to show that T does not have fixed points.

Let C[a, b] be the Banach space of all real-valued continuous functions on a given closed interval [a, b] equipped with the sup-norm

$$||f|| = \sup_{x \in [a,b]} |f(x)|$$
 for $f \in C[a,b]$,

for arbitrary $X \in \mathfrak{M}_{C[a,b]}$ and $\epsilon > 0$ we put

$$\omega(X,\epsilon) = \sup_{x \in X} \left\{ \sup\{|x(t) - x(s)| : s, t \in [a,b], |s-t| \le \epsilon \} \right\}.$$

It is known that the following function ω_0 is a subadditive MNC (for more details see [11])

$$\omega_0(X) = \lim_{\epsilon \to 0} \omega(X, \epsilon)$$

Example 2.6. Let M > 0 be a real number, $K : [a, b] \times [a, b] \times [-M, M] \rightarrow \mathbb{R}$ be a continuous function and $V \in C[a, b]$. Define the self map F on C[a, b] by

$$F(f)(s) = V(s) + \mu \int_{a}^{b} K(s, t, f(t))dt \quad f \in C[a, b].$$
⁽⁹⁾

We know that the operator F is compact ([8]).

Assume that $G : \mathbb{R} \to \mathbb{R}$ is a continuous and bounded function. Now, Let us consider the following integral equation on C[a, b]

$$u(s) = G(u)(s) + F(u)(s),$$
(10)

where $u \in C[a, b]$ is unknown and F is defined by (9). If we define the self map T on C[a; b] by

 $T(f)(s) = G(f)(s) + F(f)(s) \qquad f \in C[a, b],$

then every solution of equation (10) corresponds to a fixed point of the operator T. Let

$$R = \sup_{x \in \mathbb{R}} |G(x)| + ||V|| + |\mu|(b-a) \sup \left\{ |K(x, y, z)| : x, y \in [a, b], z \in [-M, M] \right\}.$$

Suppose that the function G satisfies the following property: there exist $0 < \lambda_0 < 1$ and $\epsilon_0 > 0$ such that for all $\lambda_0 < \lambda < 1, 0 < \epsilon < \epsilon_0, s, t \in [a, b]$ with $|s - t| \le \epsilon$, $X \subseteq B(0, R)$ with ConvX = X and $f \in X$ we have

$$\lambda |G(f(s)) - G(f(t))| \leq \omega(X, \epsilon) \quad implies \ that \quad |G(f(s)) - G(f(t))| \leq |f(s) - f(t)|. \tag{11}$$

Then T has ϵ -fixed point property (notice that if for example G is a nonexpansive function, then it satisfies (11)).

Obviously, T maps B(0, R) into B(0, R). Let $X \in \mathcal{A}_{G,\lambda}$ with $\lambda_0 < \lambda < 1$ and let $0 < \epsilon < \epsilon_0$, $s, t \in [a, b]$ with $|s - t| \leq \epsilon$ and $f \in X$, therefore $\lambda G(f) \in X$ and this implies that

$$\lambda \left| G(f(s)) - G(f(t)) \right| \leq \omega(X, \epsilon).$$

Thus, by (11)

$$\left|G(f(s)) - G(f(t))\right| \leq |f(s) - f(t)|.$$

This means that

$$\omega(G(X),\epsilon) \leq \omega(X,\epsilon).$$

By taking the limit as $\epsilon \to 0$ on both sides of (12), we conclude that

$$\omega_0(G(X)) \leq \omega_0(X).$$

Thus

$$\omega_0(T(X)) \leq \omega_0(G(X) + F(X)) \leq \omega_0(G(X)) + \omega_0(F(X)) \leq \omega_0(X) + 0 = \omega_0(X).$$

Hence, Theorem **2.2** *guarantees that T has* ϵ *-fixed point property. This is in particular useful for the approximation purposes.*

(12)

Let *C* be a nonempty and bounded subset of *E*. Consider a map $T : C \to C$. We define the map $\beta : \mathfrak{M}(C) \to \mathbb{R}$ by

$$\beta(A) = \sup\left\{ ||x - Tx|| : x \in A \right\},\$$

where $\mathfrak{M}(C)$ is the set of all nonempty subsets of *C*.

Theorem 2.7. Let *C* be a nonempty, bounded, closed and convex subset of *E* and $T : C \to C$ be a continuous mapping. Suppose that there exists a map $\varphi : [0, +\infty) \to [0, +\infty)$ such that φ is continuous at 0, $\varphi(0) = 0$, φ is increasing on $[0, \delta]$ for some $\delta > 0$ and for each nonempty and closed subset *A* of *C* with $\beta(A) \neq 0$ we have

$$\mu(TA) \leqslant \varphi(\beta(A)). \tag{13}$$

If T has the ϵ -fixed point property, then T has a fixed point in the set C.

Proof. For any $n \in \mathbb{N}$ we define

,

$$F_n = \left\{ x \in C : ||x - Tx|| \le \frac{1}{n} \right\}.$$
(14)

By the hypothesis, the set F_n is nonempty for any $n \in \mathbb{N}$. Also each F_n is closed and $F_{n+1} \subseteq F_n$ for all $n \in \mathbb{N}$. Now (13) implies

$$\mu(TF_n) \leq \varphi(\beta(F_n))$$
 for any $n \in \mathbb{N}$.

However

$$\beta(F_n) = \sup\left\{ ||x - Tx|| : x \in F_n \right\} \le \frac{1}{n}.$$

Thus

$$\mu(TF_n) \le \varphi(\frac{1}{n}) \text{ for any } n \in \mathbb{N}.$$
(15)

By the continuity of φ at 0 and (15) we have $\lim_{n \to \infty} \mu(TF_n) = \mu(\overline{TF_n}) = 0$, therefore

$$\bigcap_{n=1}^{\infty} \overline{TF_n} \neq \emptyset.$$

We may now consider $y \in \bigcap_{n=1}^{\infty} \overline{TF_n}$. Then, for any $n \in \mathbb{N}$ we can choose $x_n \in F_n$ such that $||Tx_n - y|| \le \frac{1}{n}$. By (14) we have

$$||x_n - y|| \le ||Tx_n - x_n|| + ||Tx_n - y|| \le \frac{2}{n}.$$

Hence $x_n \to y$ when $n \to \infty$. Now the continuity of *T* implies that $Tx_n \to Ty$, so Ty = y and the proof is complete. \Box

Combining Corollary 2.3 and Theorem 2.7 yields the following theorem.

Theorem 2.8. Let C be a nonempty, bounded, closed and convex subset of E and $T : C \to C$ be a continuous mapping and $\theta \in C$. Assume that there exists a $\lambda_0 \in [0, 1)$ such that for any $A \in \mathcal{A}_{T,\lambda}$ with $\lambda \in (\lambda_0, 1]$ we have

$$\mu(TA) \le \mu(A).$$

Moreover, suppose that there exists a map $\varphi : [0, +\infty) \rightarrow [0, +\infty)$ such that φ is continuous at 0, $\varphi(0) = 0$, φ is increasing on $[0, \delta]$ for some $\delta > 0$ and for each nonempty and closed subset A of C with $\beta(A) \neq 0$ we have

 $\sigma(TA) \le \varphi(\beta(A)).$

Then, T has at least a fixed point in *C*. Here σ is an MNC on \mathfrak{M}_E such that $\{\theta\} \in \ker \sigma$.

Next we present two consequences of Theorem 2.8. We begin with the following simple corollary.

Corollary 2.9. Let C be a nonempty, bounded, closed and convex subset of E and $T : C \rightarrow C$ be a nonexpansive mapping and $\theta \in C$. If there exists L > 0 such that for all $x, y \in C$ with $x \neq Tx$ and $y \neq Ty$ we have

 $||Tx - Ty|| \le L \max\{||x - Tx||, ||y - Ty||\}.$

Then, T has a fixed point in C.

Proof. To prove Corollary 2.9, it is sufficient to consider the function δ in (1) as an MNC on \mathfrak{M}_E and to check that if we define $\varphi : [0 + \infty) \rightarrow [0, +\infty)$ with $\varphi(x) = Lx$ for all $x \in [0, +\infty)$, then all the conditions in Theorem 2.8 are satisfied. \Box

Corollary 2.10. Let *C* be a nonempty, bounded, closed and convex subset of *E* and *F* : $C \rightarrow C$ be a continuous mapping and $\theta \in C$. Let all the conditions in Theorem 2.8 for the map *F* be satisfied and the MNCs μ , σ be subadditive. Then for every compact, continuous map $G : C \rightarrow C$ such that $(F + G)C \subseteq C$ the map T = F + G has a fixed point in *C*.

Proof. For every $A \in \mathcal{A}_{T,\lambda}$ with $\lambda \in (\lambda_0, 1]$ we have

$$\mu(TA) = \mu((F+G)A) \le \mu(FA+GA) \le \mu(FA) + \mu(GA) = \mu(FA) \le \mu(A),$$

and for every nonempty, closed subset *A* of *C* with $\beta(A) \neq 0$ we have

$$\sigma(TA) = \sigma((F+G)A) \le \sigma(FA+GA) \le \sigma(FA) + \sigma(GA) = \sigma(FA) \le \varphi(\beta(A)).$$

Now, Theorem 2.8 completes the proof. \Box

3. A Fixed Point Result in Uniformly Convex Banach Spaces

In this section, we prove a fixed point result in uniformly convex Banach spaces under some weak conditions, which in a sense is the best generalization of Theorem 1.6. First we mention a technical lemma which will be needed in the proof of the main result of this section. The proof of this lemma can be found in [2].

Lemma 3.1. Let *I* be a direct set and $\{C_{\alpha}\}_{\alpha \in I}$ be a decreasing net of nonempty closed convex bounded subsets of a uniformly convex Banach space *E*. Then $\bigcap_{\alpha \in I} C_{\alpha}$ is a nonempty closed convex subset of *E*.

The main result of this section is the following theorem.

Theorem 3.2. Let *C* be a nonempty, bounded, closed and convex subset of a uniformly convex Banach space *E* and $T : C \rightarrow C$ be a continuous mapping. Assume that for all nonempty, bounded, closed, convex subset *B* of *C* with $TB \subseteq B$ and $\mu(B) \neq 0$ there exists $n_0 \in \mathbb{N}$ such that

 $\mu(B_{n_0}(T)) \neq \mu(B),$

where $B_n(T)$ is defined as in (3). Then T has a fixed point in C.

Proof. Let \mathfrak{B} be the family of all nonempty, bounded, closed and convex subsets B of C with $TB \subseteq B$. Set inclusion defines a partial ordering on \mathfrak{B} . Every chain $\mathfrak{C} \subseteq \mathfrak{B}$ has a lower bound by Lemma 3.1, namely, the intersection of all subsets of E which are elements of \mathfrak{C} . By Zorn's lemma, \mathfrak{B} has a minimal element A. We claim that $\mu(A) = 0$. If not, in view of our hypothesis, there exists $n_0 \in \mathbb{N}$ such that $\mu(A_{n_0}(T)) \neq \mu(A)$. Clearly, $A_{n_0}(T) \in \mathfrak{B}$ and $A_{n_0}(T) \subseteq A$. Since A is a minimal element of \mathfrak{B} , then $A = A_{n_0}(T)$ and this implies that $\mu(A_{n_0}) = \mu(A)$, which is a contradiction and the proof is complete. \Box

References

- [1] R.P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press (2004).
- [2] R.P. Agarwal, D. O'Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, vol. 6 of Topological Fixed Point Theory and Its Applications, Springer, New York, NY, USA, 2009.
- [3] R.P. Agarwal, D. O'Regan, A. Sikorska-Nowak, The set of solutions of integro differential equations in Banach spaces, Bull. Aust. Math. Soc. 78 (2008) 507-522.
- [4] A. Aghajani, J. Banaś, N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013) 345-358.
- [5] A. Aghajani, Y. Jalilian, Existence and global attractivity of solutions of a nonlinear functional integral equation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 3306-3312.
- [6] A. Aghajani, Y. Jalilian, Existence of nondecreasing positive solutions for a system of singular integral equations, Mediterr. J. Math. 8 (2011) 563-576.
- [7] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser Verlag Basel, Boston, Berlin 1992.
- [8] J.M. Ayerbe Toledano, T. Domínguez Benavides, G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory: Advances and Applications, vol. 99 Birkäuser, Basel (1997).
- [9] J. Banaś, A. Chlebowicz, On existence of integrable solutions of a functional integral equation under Caratheodory conditions, Nonlinear Anal. 70 (2009) 3172-3179.
- [10] J. Banaś. K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60. New York. Dekker. 1980.
- [11] J. Banaś, On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carolin. 21 (1980) 131-143.
- [12] J. Banaś, D. O'Regan, R.P. Agarwal, Measures of noncompactness and asymptotic stability of solutions of a quadratic Hammerstein integral equation, Rocky Mountain J. Math. 6 (2011) 1769-1792.
- [13] J. Banaś, D. O'Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl. 34 (2008) 573-584.
- [14] M. Benchohra, D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 65 (2012) 1-8.
- [15] G. Darbo, Punti uniti in transformazioni a condomino non compatto, Rend. Semin. Mat. Univ. Padova 24 (1955) 84-92.
- [16] B.C. Dhage, Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness, Differ. Equ. Appl. 2 (2010), 299318.
- [17] B.C. Dhage, S.S. Bellale, Local asymptotic stability for nonlinear quadratic functional integral equations, Electron. J. Qual. Theory Differ. Equ. 10 (2008) 1-13.
- [18] L.S. Goldenštein, I.C. Gohberg, A.S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Učen. Zap. Kishinevsk. Univ. 29 (1957) 29-36.
- [19] X. Huang, J. Cao, On attractivity and positivity of solutions for functional integral equations of fractional order, Math. Probl. Eng. (2013), Article ID 916369, 17 pages, doi:10.1155/2013/916369.
- [20] S. Ji, G. Li, A unified approch to nonlocal impulsive differential equations with the measure of noncompactness, Adv. Difference Equ. 2012, 2012:182 doi:10.1186/1687-1847-2012-182.
- [21] K. Kuratowski, Sur les espaces compleetes, Fund. Math. 15 (1930) 301-309.
- [22] W. Long, X.J. Zheng, L. Li, Existence of periodic solutions for a class of functional integral equations, Electron. J. Qual. Theory Differ. Equ. 57 (2012) 1-11.
- [23] S.A. Mohiuddine, M. Mursaleen, A. Alotaibi, The Hausdorff measure of noncompactness for some matrix operators, Nonlinear Anal. 92 (2013) 119-129.
- [24] B.N. Sadovskiĭ, Limit compact and condensing operators, Russian Math. Surveys, 27 (1972) 86-144.
- [25] E. Schmeidel, Z. Zbaszyniak, An application of Darbo's fixed point theorem in the investigation of periodicity of solutions of difference equations, Comput. Math. Appl. 64 (2012) 2185-2191.
- [26] X. Xue, Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal. 70 (2009) 2593-2601.