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Abstract. In this paper we present a generalization of Darbo’s fixed point theorem and using this general-
ization we prove an ε-fixed point result in Banach spaces. Also, we present a generalization of Darbo and
Sadovskiı̆ fixed point theorem in uniformly convex Banach spaces.

1. Introduction and Preliminaries

The concept of a measure of noncompactness (MNC) was initiated by Kuratowski [21]. If A is a bounded
set of a metric space, the Kuratowski MNC of A is defined as

α(A) = inf{ε > 0 : A can be covered with a finite number of sets of diameter smaller than ε}.

In 1957, Goldens̆tein, Gohberg and Markus [18] introduced another MNC called the Hausdorff MNC and
is defined as

χ(A) = inf
{
ε > 0 : A has a finite ε − net in E

}
.

We refer the reader to Sadovskiı̆ [24] who introduced a general concept of MNC (see also [7], [10], [11]).
In 1955, G. Darbo proved a fixed point theorem via the concept of Kuratowski MNC [15] which general-

izes the classical Schauder fixed point theorem. In 1980, Banaś proved a fixed point theorem of Darbo type
(see Theorem 1.5) using the axiomatic definition of MNC [11].

For applications to differential and integral equations we refer the reader to [3, 5, 6, 9, 10, 12–14, 16, 17,
19, 20, 22, 23, 25, 26].

For the rest of this section, we provide some notations, definitions and fundamental theorems which
will be needed. Let E be a given Banach space with the norm ‖.‖ and zero element θ. Denote by X and
ConvX the closure and closed convex hull of X, respectively, where X is a nonempty, bounded subset of E.
We denote byME the family of all nonempty, bounded subsets of E and by NE its subfamily consisting of
all relatively compact sets.
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Definition 1.1 ([1]). Let X and Y be normed linear spaces. A map T : X → Y is called compact if TX is contained
in a compact subset of Y.

Definition 1.2 ([1]). Let X be a subset of a Banach space E and F : X→ X a map. Given ε > 0, a point x ∈ X with
‖x − F(x)‖ < ε is called an ε− fixed point for F. We say that F has the ε−fixed point property if for any ε > 0, F has a
ε− fixed point.

Definition 1.3. A mapping µ :ME → R+ = [0,+∞) is said to be an MNC in E if it satisfies the following conditions
for all X,Y ∈ME:

1o ker µ =
{
X ∈ME : µ(X) = 0

}
, ∅ and ker µ ⊆ NE.

2o X ⊆ Y⇒ µ(X) 6 µ(Y).

3o µ(X) = µ(ConvX) = µ(X).

4o µ
(
λX + (1 − λ)Y

)
≤ λµ(X) + (1 − λ)µ(Y) for every λ ∈ [0, 1].

5o If Xn ∈ME, Xn+1 ⊆ Xn, Xn = Xn for n=1, 2, 3, ... and lim
n→∞

µ(Xn) = 0, then X∞ =
⋂
∞

n=1 Xn , ∅.

In addition, if µ satisfies

6o µ(X + Y) 6 µ(X) + µ(Y)

then it is said to be subadditive.

The family ker µmentioned in 1o is called the kernel of the MNC µ. Also, notice that the intersection set
X∞ from axiom 5o is a member of ker µ.

An elementary example of an MNC on a Banach space E is defined as follows

µ(A) = δ(A) for all A ∈ME; (1)

here δ(A) = sup
{
‖x − y‖ : x, y ∈ A

}
.

Theorem 1.4 ([1]). Let C be a nonempty, bounded, closed and convex subset of a Banach space E. Then every
compact, continuous map F : C→ C has at least one fixed point.

The above fixed point theorem is known as Schauder’s fixed point principle and its generalization,
called the Darbo fixed point theorem, is stated next.

Theorem 1.5 ([10]). Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let T : C→ C
be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that

µ(TA) ≤ kµ(A), (2)

for any nonempty subset A of C, where µ is an MNC defined in E. Then T has at least a fixed point in the set C.

A celebrated generalization of Darbo’s fixed point theorem is the following result, usually called the
theorem of Darbo and Sadovskiı̆.

Theorem 1.6 ([8]). Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let T : C→ C
be a continuous mapping. Assume that µ is an MNC defined onME with the following additional condition

µ(A ∪ B) = max
{
µ(A), µ(B)

}
for all A,B ∈ME.

If for any nonempty subset A of C we have

µ(TA) < µ(A),

then T has a fixed point in C.

In this paper, we obtain a generalization of the Darbo fixed point theorem under weaker conditions
than [4] and using this generalization we prove an ε-fixed point result in Banach spaces. Under a certain
condition, we give some fixed point results for mappings that have the ε-fixed point property. The last
section of this paper is devoted to generalizing Theorem 1.6 in uniformly convex Banach spaces.
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2. ε-fixed Point Result

Let E be a Banach space and µ be an MNC on ME such that {θ} ∈ kerµ. Let C be a nonempty subset
of E and T : C → C be a map. For any nonempty subset A of C we define, and fix hereafter, the iterative
sequence {An(T)}, dependent on the set A and the map T, as follows

A0 = A and An = ConvTAn−1 for all n ∈N. (3)

Now, we present a simple generalization of the Darbo fixed point theorem.

Theorem 2.1. Let C be a nonempty, bounded, closed and convex subset of E and T : C→ C be a continuous mapping.
Assume that there exists a nondecreasing function ψ : [0,+∞) → [0,+∞) such that ψn(t) → 0 as n → ∞ for each
t ≥ 0. If for all nonempty, closed and convex subsets A of C with TA ⊆ A there exists a constant m = m(A) ∈N such
that

µ
(
Am(T)

)
6 ψ

(
µ(A)

)
. (4)

Then, T has at least a fixed point in C.

Proof. Let
B =

{
B ⊆ C : B is nonempty, bounded, closed and convex with TB ⊆ B

}
.

Notice that Cn(T) ∈ B for all n ∈Nwhere Cn is defined as in (3) with C0 = C. Since the sequence
{
µ
(
Cn(T)

)}
is decreasing and nonnegative, therefore µ

(
Cn(T)

)
→ r when n→∞, where r is a nonnegative real number.

Now taking into account (4), we see there exists k1 ∈N such that

µ
(
Ck1 (T)

)
6 ψ

(
µ(C)

)
.

Having chosen k2, k3, ..., ki−1, we see from our assumption that there exists ki ∈N such that

µ
((

Ck1+k2+...+ki−1 (T)
)

ki

(
T
))

= µ
(
Ck1+k2+...+ki (T)

)
6 ψi

(
µ(C)

)
. (5)

If we put ni =

i∑
n=1

kn, then (5) can be rewritten as

µ
(
Cni (T)

)
6 ψi

(
µ(C)

)
. (6)

Since ψi
(
µ(C)

)
→ 0 as i → ∞, (6) implies that r = 0 so the set C∞ = ∩∞n=1Cn(T) is nonempty and compact.

Since the set C∞ is also convex and invariant under T, the classical Schauder fixed point theorem (Theorem
1.4) completes the proof.

Now, suppose that C is a nonempty, bounded, closed and convex subset of E and T : C → C is a map.
Assume that λ ∈ [0, 1]. Define, and fix hereafter, the familyAT,λ as follows

AT,λ :=
{
A ⊆ C : A , ∅, A = ConvA, λ(TA) ⊆ A and

1
λ

A ⊆ C
}
.

Notice that C ∈ AT,1 and if θ ∈ C, then by the convexity of C we have C ∈ AT,λ for any λ ∈ [0, 1).
The following result gives us a sufficient condition so that a self map T has the ε−fixed point property.

Theorem 2.2. Let C be a nonempty, bounded, closed and convex subset of E with θ ∈ C and T : C → C be a
continuous mapping. If there exist λ0 ∈ [0, 1) with the property that: for all A ∈ AT,λ with λ ∈ (λ0, 1) there exists a
nonnegative integer m such that

µ
(
TAm(λT)

)
6 µ(A). (7)

Then T has the ε−fixed point property.
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Proof. Choose λ0 < λ < 1 and define Gλ : C→ C with Gλx = λTx. If A ∈ AT,λ, then, by axiom 4o and (7), we
have

µ
(
Am+1(Gλ)

)
= µ

(
ConvλT

(
Am(Gλ)

))
6 λµ

(
TAm(λT)

)
6 λµ(A).

Now, Theorem 2.1 (define ψ(x) = λx for all x > 0) guarantees that there exists xλ ∈ C with

xλ = Gλxλ = λTxλ.

Thus

‖xλ − Txλ‖ = (1 − λ)‖Txλ‖ 6 (1 − λ)δ(C)→ 0 as λ→ 1.

This completes the proof.

Now, we mention two corollaries of Theorem 2.2.

Corollary 2.3. Let C be a nonempty, bounded, closed and convex subset of E and T : C→ C be a continuous mapping
and θ ∈ C. Assume that there exists λ0 ∈ [0, 1) such that for any A ∈ AT,λ with λ ∈ (λ0, 1) we have

µ(TA) 6 µ(A).

Then T has the ε−fixed point property.

Proof. It is just sufficient to consider m = 0 for all A ∈ AT,λ with λ ∈ (λ0, 1) in Theorem 2.2.

Notice that the following well-known result is a special case of Corollary 2.3.

Corollary 2.4. Let C be a nonempty, bounded, closed and convex subset of E and T : C → C be a nonexpansive
mapping and θ ∈ C. Then T has the ε−fixed point property.

Proof. Consider the function δ given in (1) as an MNC onME. By the nonexpansivity of T, for all nonempty
subset A of C we have

‖Tx − Ty‖ 6 ‖x − y‖ 6 δ(A) for all x, y ∈ A. (8)

Now, (8) implies that

δ(TA) 6 δ(A).

Then, by Corollary 2.3, T has the ε-fixed point property.

In the following examples, we apply the above results to an old and well-known example in Hilbert space
l2 (see [8]) and the Fredholm operator.

Example 2.5. Let U2 be the closed unit ball in l2. Define the operator T : U2 → U2 by

T(x) = T(x1, x2, x3, ...) = (
√

1 − ‖x‖2, x1, x2, x3, ...) for all x ∈ U2.

Then we can write T = D + S where D is the one dimensional mapping

D(x) = D(x1, x2, x3, ...) = (
√

1 − ‖x‖2, 0, 0, 0, ...) for all x ∈ U2,

and S is an isometry. Hence, T is continuous and for every bounded subset B of U2 we haveµ
(
T(B)

)
6 µ

(
D(B)+S(B)

)
6

µ
(
D(B)

)
+ µ

(
S(B)

)
6 0 + µ(B), where µ is a subadditive MNC on Ml2 . So, by Theorem 2.2, T has ε-fixed point

property. However, it is easy to show that T does not have fixed points.
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Let C[a, b] be the Banach space of all real-valued continuous functions on a given closed interval [a, b]
equipped with the sup-norm

‖ f ‖ = sup
x∈[a,b]

| f (x)| for f ∈ C[a, b],

for arbitrary X ∈MC[a,b] and ε > 0 we put

ω(X, ε) = sup
x∈X

{
sup{|x(t) − x(s)| : s, t ∈ [a, b], |s − t| 6 ε}

}
.

It is known that the following function ω0 is a subadditive MNC (for more details see [11])

ω0(X) = lim
ε→0

ω(X, ε).

Example 2.6. Let M > 0 be a real number, K : [a, b]×[a, b]×[−M,M]→ R be acontinuous function and V ∈ C[a, b].
Define the self map F on C[a, b] by

F( f )(s) = V(s) + µ

∫ b

a
K(s, t, f (t))dt f ∈ C[a, b]. (9)

We know that the operator F is compact ([8]).
Assume that G : R → R is a continuous and bounded function. Now, Let us consider the following integral

equation on C[a, b]

u(s) = G(u)(s) + F(u)(s), (10)

where u ∈ C[a, b] is unknown and F is defined by (9). If we define the self map T on C[a; b] by

T( f )(s) = G( f )(s) + F( f )(s) f ∈ C[a, b],

then every solution of equation (10) corresponds to a fixed point of the operator T. Let

R = sup
x∈R
|G(x)| + ‖V‖ + |µ|(b − a) sup

{
|K(x, y, z)| : x, y ∈ [a, b], z ∈ [−M,M]

}
.

Suppose that the function G satisfies the following property: there exist 0 < λ0 < 1 and ε0 > 0 such that for all
λ0 < λ < 1, 0 < ε < ε0, s, t ∈ [a, b] with |s − t| 6 ε, X ⊆ B(0,R) with ConvX = X and f ∈ X we have

λ
∣∣∣G(

f (s)
)
− G

(
f (t)

)∣∣∣ 6 ω(X, ε) implies that
∣∣∣G(

f (s)
)
− G

(
f (t)

)∣∣∣ 6 | f (s) − f (t)|. (11)

Then T has ε-fixed point property (notice that if for example G is a nonexpansive function, then it satisfies (11)).
Obviously, T maps B(0,R) into B(0,R). Let X ∈ AG,λ with λ0 < λ < 1 and let 0 < ε < ε0, s, t ∈ [a, b] with

|s − t| 6 ε and f ∈ X, therefore λG( f ) ∈ X and this implies that

λ
∣∣∣G(

f (s)
)
− G

(
f (t)

)∣∣∣ 6 ω(X, ε).

Thus, by (11)∣∣∣G(
f (s)

)
− G

(
f (t)

)∣∣∣ 6 | f (s) − f (t)|.

This means that

ω(G(X), ε) 6 ω(X, ε). (12)

By taking the limit as ε→ 0 on both sides of (12), we conclude that

ω0(G(X)) 6 ω0(X).

Thus

ω0(T(X)) 6 ω0

(
G(X) + F(X)

)
6 ω0(G(X)) + ω0(F(X)) 6 ω0(X) + 0 = ω0(X).

Hence, Theorem 2.2 guarantees that T has ε−fixed point property. This is in particular useful for the approximation
purposes.



A. Aghajani, A. Mosleh Tehrani, D. O’Regan / Filomat 29:6 (2015), 1209–1216 1214

Let C be a nonempty and bounded subset of E. Consider a map T : C → C. We define the map
β :M(C)→ R by

β(A) = sup
{
‖x − Tx‖ : x ∈ A

}
,

whereM(C) is the set of all nonempty subsets of C.

Theorem 2.7. Let C be a nonempty, bounded, closed and convex subset of E and T : C→ C be a continuous mapping.
Suppose that there exists a map ϕ : [0,+∞)→ [0,+∞) such that ϕ is continuous at 0, ϕ(0) = 0, ϕ is increasing on
[0, δ] for some δ > 0 and for each nonempty and closed subset A of C with β(A) , 0 we have

µ(TA) 6 ϕ
(
β(A)

)
. (13)

If T has the ε−fixed point property, then T has a fixed point in the set C.

Proof. For any n ∈Nwe define

Fn =
{
x ∈ C : ‖x − Tx‖ ≤

1
n

}
. (14)

By the hypothesis, the set Fn is nonempty for any n ∈N. Also each Fn is closed and Fn+1 ⊆ Fn for all n ∈N.
Now (13) implies

µ(TFn) ≤ ϕ
(
β(Fn)

)
for any n ∈N.

However

β(Fn) = sup
{
‖x − Tx‖ : x ∈ Fn

}
≤

1
n
.

Thus

µ(TFn) ≤ ϕ(
1
n

) for any n ∈N. (15)

By the continuity of ϕ at 0 and (15) we have lim
n→∞

µ(TFn) = µ(TFn) = 0, therefore

∞⋂
n=1

TFn , ∅.

We may now consider y ∈
⋂
∞

n=1 TFn. Then, for any n ∈ N we can choose xn ∈ Fn such that ‖Txn − y‖ ≤
1
n

.
By (14) we have

‖xn − y‖ ≤ ‖Txn − xn‖ + ‖Txn − y‖ ≤
2
n
.

Hence xn → y when n → ∞. Now the continuity of T implies that Txn → Ty, so Ty = y and the proof is
complete.

Combining Corollary 2.3 and Theorem 2.7 yields the following theorem.

Theorem 2.8. Let C be a nonempty, bounded, closed and convex subset of E and T : C→ C be a continuous mapping
and θ ∈ C. Assume that there exists a λ0 ∈ [0, 1) such that for any A ∈ AT,λ with λ ∈ (λ0, 1] we have

µ(TA) 6 µ(A).

Moreover, suppose that there exists a map ϕ : [0,+∞) → [0,+∞) such that ϕ is continuous at 0, ϕ(0) = 0, ϕ is
increasing on [0, δ] for some δ > 0 and for each nonempty and closed subset A of C with β(A) , 0 we have

σ(TA) ≤ ϕ
(
β(A)

)
.

Then, T has at least a fixed point in C. Here σ is an MNC onME such that {θ} ∈ kerσ.
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Next we present two consequences of Theorem 2.8. We begin with the following simple corollary.

Corollary 2.9. Let C be a nonempty, bounded, closed and convex subset of E and T : C → C be a nonexpansive
mapping and θ ∈ C. If there exists L > 0 such that for all x, y ∈ C with x , Tx and y , Ty we have

‖Tx − Ty‖ ≤ L max
{
‖x − Tx‖, ‖y − Ty‖

}
.

Then, T has a fixed point in C.

Proof. To prove Corollary 2.9, it is sufficient to consider the function δ in (1) as an MNC onME and to check
that if we define ϕ : [0 +∞)→ [0,+∞) with ϕ(x) = Lx for all x ∈ [0,+∞), then all the conditions in Theorem
2.8 are satisfied.

Corollary 2.10. Let C be a nonempty, bounded, closed and convex subset of E and F : C→ C be a continuous mapping
and θ ∈ C. Let all the conditions in Theorem 2.8 for the map F be satisfied and the MNCs µ, σ be subadditive. Then
for every compact, continuous map G : C→ C such that (F + G)C ⊆ C the map T = F + G has a fixed point in C.

Proof. For every A ∈ AT,λ with λ ∈ (λ0, 1] we have

µ(TA) = µ
(
(F + G)A

)
≤ µ(FA + GA) ≤ µ(FA) + µ(GA) = µ(FA) ≤ µ(A),

and for every nonempty, closed subset A of C with β(A) , 0 we have

σ(TA) = σ
(
(F + G)A

)
≤ σ(FA + GA) ≤ σ(FA) + σ(GA) = σ(FA) ≤ ϕ

(
β(A)

)
.

Now, Theorem 2.8 completes the proof.

3. A Fixed Point Result in Uniformly Convex Banach Spaces

In this section, we prove a fixed point result in uniformly convex Banach spaces under some weak
conditions, which in a sense is the best generalization of Theorem 1.6. First we mention a technical lemma
which will be needed in the proof of the main result of this section. The proof of this lemma can be found
in [2].

Lemma 3.1. Let I be a direct set and {Cα}α∈I be a decreasing net of nonempty closed convex bounded subsets of a
uniformly convex Banach space E. Then

⋂
α∈I

Cα is a nonempty closed convex subset of E.

The main result of this section is the following theorem.

Theorem 3.2. Let C be a nonempty, bounded, closed and convex subset of a uniformly convex Banach space E and
T : C → C be a continuous mapping. Assume that for all nonempty, bounded, closed, convex subset B of C with
TB ⊆ B and µ(B) , 0 there exists n0 ∈N such that

µ
(
Bn0 (T)

)
, µ(B),

where Bn(T) is defined as in (3). Then T has a fixed point in C.

Proof. Let B be the family of all nonempty, bounded, closed and convex subsets B of C with TB ⊆ B. Set
inclusion defines a partial ordering on B. Every chain C ⊆ B has a lower bound by Lemma 3.1, namely,
the intersection of all subsets of E which are elements of C. By Zorn,s lemma, B has a minimal element A.
We claim that µ(A) = 0. If not, in view of our hypothesis, there exists n0 ∈ N such that µ

(
An0 (T)

)
, µ(A).

Clearly, An0 (T) ∈ B and An0 (T) ⊆ A. Since A is a minimal element of B, then A = An0 (T) and this implies
that µ(An0 ) = µ(A), which is a contradiction and the proof is complete.
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[9] J. Banaś, A. Chlebowicz, On existence of integrable solutions of a functional integral equation under Caratheodory conditions,

Nonlinear Anal. 70 (2009) 3172-3179.
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